a2 United States Patent

US009477682B1

(10) Patent No.:

US 9,477,682 B1

Bent et al. 45) Date of Patent: Oct. 25,2016
(54) PARALLEL COMPRESSION OF DATA 2010/0223539 Al* 9/2010 Nowoczynski
CHUNKS OF A SHARED DATA OBJECT etal i, GO%ﬂifgg;
USING A LOG-STRUCTURED FILE SYSTEM 2012/0054252 Al* 3/2012 Olderdissen et al. 707/823
2012/0089781 Al* 4/2012 Ranade et al. 711/118
(71) Applicant: EMC Corporation, Hopkinton, MA 2013/0227194 Al* 82013 Kannan et al. . .. 711/103
(Us) 2014/0214770 Al* 7/2014 Kannan et al. 707/649
(72) Inventors: John M. Bent, Los Alamos, NM (US); OTHER PUBLICATIONS
Sorin Faibish, Newton, MA (US); Bent of al. “PLES hecknoint filesvstem f el i
. ent et al., : a checkpoint filesystem for parallel applica-
Gary Grider, Los Alamos, NM (US) tions”, Nov. 20, 2009, ACM, SC09, https://institute.lanl.gov/plfs/
. . . . plfs.pdf.*
(73) Assignees: EMC Corporation, Ho.pklnton, MA Kannan et al., “Using active NVRAM for cloud I/O”, Oct. 13,2011,
(US); Los Alamos National Security, IEEE, http://www.cercs.gatech.eduw/opencirrus/OC summit1 1/pa-
LLC, Los AlamOS, NM ([JS) pers/pa_pelﬁ-ka_nna_n'pdf'*
Goodell et al. “An Evolutionary Path to Object Storage Access”,
(*) Notice: Subject to any disclaimer, the term of this Date of Conference: Nov. 10-16, 2012, IEEE.*
patent is extended or adjusted under 35))
U.S.C. 154(b) by 409 days. * cited by examiner
(21) Appl. No.: 13/799,228 Primary Examiner — Chris Parry
Assistant Examiner — Daeoo Lee
(22) Filed: Mar. 13, 2013 (74) Attorney, Agent, or Firm — Ryan, Mason & Lewis,
LLP
(51) Imt.CL
GO6F 17/30 (2006.01) (57) ABSTRACT
HO4L 29/06 (2006.01) Techniques are provided for parallel compression of data
HO4L 29/08 (2006.01)
GOGF 3/06 (2006.01) chunks being written to a shared object. A client executing
5 US. Cl ' on a compute node or a burst buffer node in a parallel
(52) CPC : GOGF 1730224 (2013.01): HO4L 67/42 computing system stores a data chunk generated by the
""""" 2013.01) GOGF 2/067. 2())’13 01 Ho4L parallel computing system to a shared data object on a
6§/]097. 2)(’)13 01): H04L(69/04; 2)613 01 storage node by compressing the data chunk; and providing
. ; (. 01); (D) the data compressed data chunk to the storage node that
(58) Field of Classification Search stores the shared object. The client and storage node may
CPC ..o HO04L 69/04; HO4L 67/1097; GOG6F employ Log-Structured File techniques. The compressed
o 17/30224; GQ6F 3/067 data chunk can be de-compressed by the client when the data
See application file for complete search history. chunk is read. A storage node stores a data chunk as part of
(56) References Cited a shared object by receiving a compressed version of the

U.S. PATENT DOCUMENTS

data chunk from a compute node; and storing the com-
pressed version of the data chunk to the shared data object
on the storage node.

20 Claims, 4 Drawing Sheets

2009/0077252 Al* 3/2009 Abdo etal. ... 709/231
2010/0122199 Al* 5/2010 Darrington et al. 715/771
a1 /210-2 /210-3 g H0-N

£ 2051

7252
[tsfs cuew |

ETE

205-3
LSFS CUENT

205-N
LSFS CLIENT

COMPRESSION
2601

‘J

3

ESSION
0-3

200
J

COMPRESSION
260-N

L 240

US 9,477,682 B1

Sheet 1 of 4

Oct. 25, 2016

U.S. Patent

o

{ ¥
b
;

{ 3 7 §=081

i A

USRS NI
i e oo st s i 2 20t aae w5

QISSTAAN0T || ISSIUIN00] DS TAN0D
3 ’ A .Y

5

. ks Y
T o e . 5 o s 5o i e e

o1/

14¥ ¥0Iyd

/

IR

US 9,477,682 B1

Sheet 2 of 4

Oct. 25, 2016

U.S. Patent

0ye~—

'?m.n N S AR S oy

N-09¢
NOISS34dN02

ININO S457

N-507 7

N-017 7

\‘
=597
¥
£-097 7-097 1-097
NOISS34dHO0D NOISS 34402 NOISS4dH0?
0% &
INITD S41 INITTD SiS1 NI 451
¢-07 7 7-607 1-607 7
¢-017/ -1z -1z

¢ Il

US 9,477,682 B1

Sheet 3 of 4

Oct. 25, 2016

U.S. Patent

0vZ~

il

£ | NoIssaudhog || 2755

1-095

£ 1-508 :

INITD S491

1-09¢
NOISS34dN0

ya _lmom

IN3NY S4S7

INAT) 487
N-607 7

N-0177

T
<
o~
[

INITD 451
-0z /
0127

INITD 457
7-s07/
-0z

IN3IMY S4ST

1-607 7/

01z

U.S. Patent Oct. 25, 2016 Sheet 4 of 4 US 9,477,682 B1

OR WRITE OPERATION

?
s 450 s 420
OBTAIN COMPRESSED DATA OBTAIN DATA CHUNK
CHUNK FROM LSFS SERVER FROM APPLICATION
Vs 460 s 430
DECOMPRESS DATA CHUNK LSFS CLIENT COMPRESSES
DATA CHUNK
470
L 40
PROVIDE DECOMPRESSED
DATA CHUNK TO STORE COMPRESSED
APPLICATION ON DATA CHUNK ON LSFS
COMPUTE NODE SERVER AS PART OF
SHARED OBJECT

US 9,477,682 B1

1
PARALLEL COMPRESSION OF DATA
CHUNKS OF A SHARED DATA OBJECT
USING A LOG-STRUCTURED FILE SYSTEM

STATEMENT OF GOVERNMENT RIGHTS

This invention was made under a Cooperative Research
and Development Agreement between EMC Corporation
and Los Alamos National Security, LLC. The United States
government has rights in this invention pursuant to Contract
No. DE-AC52-06NA25396 between the United States
Department of Energy and Los Alamos National Security,
LLC for the operation of Los Alamos National Laboratory.

CROSS-REFERENCE TO RELATED
APPLICATION

This application is related to U.S. patent application Ser.
No. 13/799,264, filed Mar. 13, 2013, entitled “Parallel
Checksumming of Data Chunks of a Shared Data Object
Using a Log-Structured File System,” (now U.S. Pat. No.
9,436,722) incorporated by reference herein.

FIELD

The present invention relates to parallel storage in high
performance computing environments.

BACKGROUND

Parallel storage systems are widely used in many com-
puting environments. Parallel storage systems provide high
degrees of concurrency in which many distributed processes
within a parallel application simultaneously access a shared
file namespace.

Parallel computing techniques are used in many industries
and applications for implementing computationally inten-
sive models or simulations. For example, the Department of
Energy uses a large number of distributed compute nodes
tightly coupled into a supercomputer to model physics
experiments. In the oil and gas industry, parallel computing
techniques are often used for computing geological models
that help predict the location of natural resources. Generally,
each parallel process generates a portion, referred to as a
data chunk, of a shared data object.

Compression is a common technique to store data with
fewer bits than the original representation. For example,
lossless compression reduces bits by identifying and elimi-
nating statistical redundancy. Among other benefits, com-
pression reduces resource usage, such as data storage space
or transmission capacity.

Existing approaches compress the shared data object after
it has been sent to the storage system. The compression is
applied to offset ranges on the shared data object in sizes that
are pre-defined by the file system.

In parallel computing systems, such as High Performance
Computing (HPC) applications, the inherently complex and
large datasets increase the resources required for data stor-
age and transmission. A need therefore exists for parallel
techniques for compressing data chunks being written to a
shared object.

SUMMARY

Embodiments of the present invention provide improved
techniques for parallel compression of data chunks being
written to a shared object. In one embodiment, a client

10

15

20

25

30

35

40

45

50

55

60

65

2

executing on one or more of a compute node and a burst
buffer node in a parallel computing system stores a data
chunk generated by the parallel computing system to a
shared data object on a storage node in the parallel com-
puting system by compressing the data chunk; and providing
the data compressed data chunk to the storage node that
stores the shared object.

The client may be embodied, for example, as a Log-
Structured File System client, and the storage node may be
embodied, for example, as a Log-Structured File server.

According to another aspect of the invention, the com-
pressed data chunk can be de-compressed by the client when
the data chunk is read from the storage node. In this manner,
the de-compressed data chunk can be provided to an appli-
cation requesting the data chunk.

According to another aspect of the invention, a storage
node in a parallel computing system stores a data chunk as
part of a shared object by receiving a compressed version of
the data chunk from a compute node in the parallel com-
puting system; and storing the compressed version of the
data chunk to the shared data object on the storage node. The
storage node can provide the compressed data chunk to a
compute node when the data chunk is read from the storage
node.

Advantageously, illustrative embodiments of the inven-
tion provide techniques for parallel compression of data
chunks being written to a shared object. These and other
features and advantages of the present invention will
become more readily apparent from the accompanying
drawings and the following detailed description.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates an exemplary conventional technique
for compressing data being stored to a shared object by a
plurality of processes in a storage system;

FIG. 2 illustrates an exemplary distributed technique for
compression of data being stored to a shared object by a
plurality of processes in a storage system in accordance with
aspects of the present invention;

FIG. 3 illustrates an exemplary alternate distributed tech-
nique for compression of data being stored to a shared object
by a plurality of processes in a storage system in accordance
with an alternate embodiment of the present invention; and

FIG. 4 is a flow chart describing an exemplary LSFS
compression process incorporating aspects of the present
invention.

DETAILED DESCRIPTION

The present invention provides improved techniques for
cooperative parallel writing of data to a shared object.
Generally, one aspect of the present invention leverages the
parallelism of concurrent writes to a shared object and the
high interconnect speed of parallel supercomputer networks
to compress the data in parallel as it is written. A further
aspect of the invention leverages the parallel supercomputer
networks to provide improved techniques for parallel
decompression of the compressed data as it is read.

Embodiments of the present invention will be described
herein with reference to exemplary computing systems and
data storage systems and associated servers, computers,
storage units and devices and other processing devices. It is
to be appreciated, however, that embodiments of the inven-
tion are not restricted to use with the particular illustrative
system and device configurations shown. Moreover, the
phrases “computing system” and “data storage system” as

US 9,477,682 B1

3

used herein are intended to be broadly construed, so as to
encompass, for example, private or public cloud computing
or storage systems, as well as other types of systems
comprising distributed virtual infrastructure. However, a
given embodiment may more generally comprise any
arrangement of one or more processing devices. As used
herein, the term “files” shall include complete files and
portions of files, such as sub-files or shards.

FIG. 1 illustrates an exemplary conventional storage
system 100 that employs a conventional technique for
compression of data being stored to a shared object 150 by
a plurality of processes. The exemplary storage system 100
may be implemented, for example, as a Parallel Log-
Structured File System (PLFS) to make placement decisions
automatically, as described in U.S. patent application Ser.
No. 13/536,331, filed Jun. 28, 2012, entitled “Storing Files
in a Parallel Computing System Using List-Based Index to
Identify Replica Files,” (now U.S. Pat. No. 9,087,075)
incorporated by reference herein, or it can be explicitly
controlled by the application and administered by a storage
daemon.

As shown in FIG. 1, the exemplary storage system 100
comprises a plurality of compute nodes 110-1 through 110-N
(collectively, compute nodes 110) where a distributed appli-
cation process generates a corresponding portion 120-1
through 120-N of a distributed shared data structure 150 or
other information to store. The compute nodes 110 option-
ally store the portions 120 of the distributed data structure
150 in one or more nodes of the exemplary storage system
100, such as an exemplary flash based storage node 140. In
addition, the exemplary hierarchical storage tiering system
100 optionally comprises one or more hard disk drives (not
shown).

As shown in FIG. 1, the compute nodes 110 send their
distributed data chunks 120 into a single file 150. The single
file 150 is striped into file system defined blocks, and then
each block is compressed into a compressed block 160-1
through 160-i. As indicated above, existing compression
approaches compress the shared data structure 150 only after
it has been sent to the storage node 140 of the storage system
100. Thus, as shown in FIG. 1, the compression is applied
to offset ranges on the data in sizes that are pre-defined by
the file system 100. The offset size of the compression does
not typically align with the size of the data portions 120 (i.e.,
the file system defined blocks will typically not match the
original memory layout).

FIG. 2 illustrates an exemplary storage system 200 that
compresses data chunks 220 being stored to a shared object
250 by a plurality of processes in accordance with aspects of
the present invention. The exemplary storage system 200
may be implemented, for example, as a Parallel Log-
Structured File System.

As shown in FIG. 2, the exemplary storage system 200
comprises a plurality of compute nodes 210-1 through
210-N (collectively, compute nodes 210) where a distributed
application process generates a corresponding data chunk
portion 220-1 through 220-N (collectively, data chunks 220)
of a distributed shared data object 250 to store. The distrib-
uted application executing on given compute node 210 in the
parallel computing system 200 writes and reads the data
chunks 220 that are part of the shared data object 250 using
a log-structured file system (LSFS) client 205-1 through
205-N executing on the given compute node 210.

In accordance with one aspect of the present invention, on
a write operation, each LSFS client 205 applies a corre-
sponding compression 260-1 through 260-N to each data
chunk 220-1 through 220-N to generate a corresponding

10

15

20

25

30

35

40

45

50

55

60

65

4

compressed data chunk 265-1 through 265-N. Each com-
pressed data chunk 265 is then stored by the corresponding
LSFS client 205 on the compute nodes 210 on one or more
storage nodes of the exemplary storage system 200, such as
an exemplary LSFS server 240. The LSFS server 240 may
be implemented, for example, as a flash based storage node.
In addition, the exemplary hierarchical storage tiering sys-
tem 200 optionally comprises one or more hard disk drives
(not shown).

In accordance with another aspect of the present inven-
tion, on a read operation, the LSFS client 205 performs a
de-compression on the read operation, where the requested
compressed data chunks 265 are read from the LSFS server
240 and are provided to the corresponding L.SFS client 205
on the compute node 210 for de-compression before being
sent to the application.

FIG. 3 illustrates an exemplary storage system 300 that
compresses data chunks 220 being stored to a shared object
250 by a plurality of processes in accordance with an
alternate embodiment of the present invention. The exem-
plary storage system 300 may be implemented, for example,
as a Parallel Log-Structured File System. As shown in FIG.
3, the exemplary storage system 300 comprises a plurality of
compute nodes 210-1 through 210-N (collectively, compute
nodes 210) where a distributed application process generates
a corresponding data chunk portion 220-1 through 220-N
(collectively, data chunks 220) of a distributed shared data
object 250 to store, in a similar manner to FIG. 2. The
distributed application executing on given compute node
210 in the parallel computing system 200 writes and reads
the data chunks 220 that are part of the shared data object
250 using a log-structured file system (LSFS) client 205-1
through 205-N executing on the given compute node 210, in
a similar manner to FIG. 2.

As discussed hereinafter, a compressed version of the
distributed data structure 250 is stored in one or more
storage nodes of the exemplary storage system 200, such as
an exemplary LSFS server 240. The LSFS server 240 may
be implemented, for example, as a flash based storage node.
In addition, the exemplary hierarchical storage tiering sys-
tem 200 optionally comprises one or more hard disk drives
(not shown).

The exemplary storage system 300 also comprises one or
more flash-based burst buffer nodes 310-1 through 310-%
that process the data chunks 220 that are written by the LSFS
clients 205 to the LSFS server 240, and are read by the LSFS
clients 205 from the LSFS server 240. The exemplary
flash-based burst buffer nodes 310 comprise LSFS clients
305 in a similar manner to the LSFS clients 205 of FIG. 2.

In accordance with one aspect of the present invention, on
a write operation, each burst buffer node 310 applies a
compression function 360-1 through 360-% to each data
chunk 220-1 through 220-N to generate a corresponding
compressed data chunk 365-1 through 365-N. Each com-
pressed data chunk 365 is then stored on the LSFS server
240, in a similar manner to FIG. 2.

In accordance with another aspect of the present inven-
tion, on a read operation, the LSFS client 305 on the burst
buffer node 310 performs a de-compression on the read
operation, where the requested compressed data chunks 365
are read from the LSFS server 240 and are provided to the
burst buffer node 310 for de-compression before the de-
compressed data chunks 220 are sent to the application
executing on the compute node 210.

On a burst buffer node 310, due to the bursty nature of the
workloads, there is additional time to run computationally
intensive compression and de-compression.

US 9,477,682 B1

5

It is noted that the embodiments of FIGS. 2 and 3 can be
combined such that a first level compression is performed by
the LSFS clients 205 executing on the compute nodes 210
and additional more computationally intensive compression
is performed by the burst buffer nodes 310.

While such distributed compression may reduce perfor-
mance due to latency, this is outweighed by the improved
storage and transmission efficiency. Additionally, on the
burst buffer nodes 310, this additional latency will not be
incurred by the application since the latency will be added
not between the application on the compute nodes 210 and
the burst buffer nodes 310 but between the asynchronous
transfer from the burst buffer nodes 310 to the lower storage
servers 240.

It is anticipated, however, that performance will be
improved in most settings (e.g., the total time to move data
between the compute server 210 and the storage server 240
is typically much faster when data is compressed). The time
spent on the compression or decompression is typically
much less than the time gained from doing a network
transmission of a smaller amount of data. The variables may
be expressed as follows:

Time_uncompressed=Data_uncompressed/Bandwidth

Time_compressed=Compress_time+Data_com-
pressed/Bandwidth

For example, if Bandwidth is 1 GB/s and the data is 1 GB,
and can be compressed to 0.5 GB in 0.25 seconds, then the
time to move the data between the compute server 210 and
the data server 240 without compression is:

Time_uncompressed=1 GB/1 GB/s=1 second

Time_compressed=0.5 GB/1 GB/s+0.25 second=0.75
seconds

Thus, in this exemplary environment, a performance
boost of 25% is achieved. Recent research into compression
rates for HPC workloads, e.g., Dewan Ibtesham et al., “On
the Viability of Compression for Reducing the Overheads of
Checkpoint/Restart-based Fault Tolerance,” 41st Int’1 Conf.
on Parallel Processing (ICPP), 148-57 (2012), has shown
that compression for typical HPC workloads results in large
performance gains and they were actually assuming that
you’d do compression at both compute server and storage
server. Embodiments of the present invention only perform
the compression at the compute nodes 210 and aspects of the
present invention makes it so that larger chunks of data can
be compressed, thereby further improving the compression
ratio. Thus, aspects of the present invention provide a larger
gain than what was realized by the above-referenced recent
research.

FIG. 4 is a flow chart describing an exemplary LSFS
compression process 400 incorporating aspects of the pres-
ent invention. The exemplary LSFS compression process
400 is implemented by the LSFS clients 205 executing on
the compute nodes 210 in the embodiment of FIG. 2 and by
the flash-based burst buffer nodes 310 in the embodiment of
FIG. 3.

As shown in FIG. 4, the exemplary LSFS compression
process 400 initially performs a test during step 410 to
determine if the current operation is a read operation or a
write operation. If it is determined during step 410 that the
current operation is a read operation, then the exemplary
LSFS compression process 400 obtains the data chunk from
the application during step 420. The exemplary LSFS com-
pression process 400 then compresses the data chunk during
step 430 on the compute nodes 210 or the burst buffer nodes

10

15

20

25

30

35

40

45

50

55

60

65

6

310. Finally, the compressed data chunk is stored on the
LSFS server 240 as part of the shared object 250 during step
440.

If, however, it is determined during step 410 that the
current operation is a write operation, then the exemplary
LSFS compression process 400 obtains the compressed data
chunk from the LSFS server 240 during step 450. The
compressed data chunk is then decomressed during step 460
and the decompressed data chunk is provided to the appli-
cation on the compute node during step 470.

Among other benefits, the number of compute servers 210
is at least an order of magnitude greater than the number of
storage servers 240 in HPC systems, thus it is much faster
to perform the compression on the compute servers 210. In
addition, the compression is perfomed on the data chunks
220 as they are being written by the LSFS client 205 as
opposed to when they have been placed into the file 250 by
the server 240. The chunks 220 in a log-structured file
system retain their original data organization whereas in
existing approaches, the data in the chunks will almost
always be reorganized into file system defined blocks. This
can introduce additional latency as the file system will either
wait for the blocks to be filled or do the compression
multiple times each time the block is partially filled.

In this manner, aspects of the present invention leverage
the parallelism of concurrent writes to a shared object and
the high interconnect speed of parallel supercomputer net-
works to improve data compression during a write operation
and to improve data de-compression during a read operation.
Aspects of the present invention thus recognize that the
log-structured file system elimintes the need for artificial file
system boundaries because all block sizes perform equally
well in a log-structured file system.

Because PLFS files can be shared across many locations,
data processing required to implement these functions can
be performed more efficiently when there are multiple nodes
cooperating on the data processing operations. Therefore,
when this is run on a parallel system with a parallel
language, such as MPI, PLFS can provide MPI versions of
these functions which will allow it to exploit parallelism for
more efficient data processing.

Consider a partial read. For example, assume that a write
operation wrote bytes {0-100} and the corresponding com-
pressed data chunk was stored at write time. If the reader
reads bytes {25-75}, then the compressed data chunk does
not match those bytes 25-75. So the storage server node 240
can send the entire byte range to the compute node or burst
buffer for de-compression or de-compress bytes 25-75 and
only send those. The former approach has the disadvantage
of sending unnecessary data across the network. The latter
approach has the disadvantage of doing the de-compression
on the storage server node 240 instead of the much more
scalable compute nodes 210 or burst buffer nodes 310.

CONCLUSION

Numerous other arrangements of servers, computers, stor-
age devices or other components are possible. Such com-
ponents can communicate with other elements over any type
of network, such as a wide area network (WAN), a local area
network (LAN), a satellite network, a telephone or cable
network, or various portions or combinations of these and
other types of networks.

It should again be emphasized that the above-described
embodiments of the invention are presented for purposes of
illustration only. Many variations may be made in the
particular arrangements shown. For example, although

US 9,477,682 B1

7

described in the context of particular system and device
configurations, the techniques are applicable to a wide
variety of other types of information processing systems,
data storage systems, processing devices and distributed
virtual infrastructure arrangements. In addition, any simpli-
fying assumptions made above in the course of describing
the illustrative embodiments should also be viewed as
exemplary rather than as requirements or limitations of the
invention. Numerous other alternative embodiments within
the scope of the appended claims will be readily apparent to
those skilled in the art.

What is claimed is:
1. A method performed by a log-structured file system
client executing on one or more of a compute node and a
burst buffer node in a parallel computing system for storing
a data chunk generated by said parallel computing system to
a shared data object on a storage node in said parallel
computing system, comprising:
processing said data chunk generated by said parallel
computing system using said log structured file system
client executing on at least one processing device,
wherein said log structured file system client executes
on one or more of said compute node and said burst
buffer node in said parallel computing system;

compressing, by said log-structured file system client
executing on at least one processing device, said data
chunk as said data chunk is written by said log-
structured file system client to said storage node,
wherein a plurality of other log structured file system
clients compress a corresponding plurality of other data
chunks of said shared data object in parallel to generate
a plurality of compressed other data chunks; and

providing, by said log-structured file system client execut-
ing on at least one processing device, said compressed
data chunk to said storage node for storage as part of
said shared object, wherein said storage node stores
said compressed data chunk as part of said shared
object with said plurality of compressed other data
chunks, and wherein said shared object is shared by a
plurality of distributed processes in said parallel com-
puting system.

2. The method of claim 1, wherein said storage node
comprises a Log-Structured File server.

3. The method of claim 2, wherein said Log-Structured
File server stores said compressed version of said data chunk
to said shared data object on said compute node.

4. The method of claim 1, further comprising the step of
de-compressing said compressed data chunk when said data
chunk is read from said storage node.

5. The method of claim 4, further comprising the step of
providing said de-compressed data chunk to an application.

6. A non-transitory machine-readable recordable storage
medium for storing a data chunk generated by a parallel
computing system to a shared data object on a storage node
in said parallel computing system, wherein one or more
software programs when executed by one or more process-
ing devices implement the steps of the method of claim 1.

7. A compute node apparatus in a parallel computing
system for executing a log-structured file system client that
stores a data chunk generated by said parallel computing
system to a shared data object on a storage node in said
parallel computing system, said compute node apparatus
comprising:

a memory; and

at least one hardware device operatively coupled to the

memory and configured to:

10

15

20

30

35

40

45

55

60

65

8

process said data chunk generated by said parallel com-
puting system using said log structured file system
client executing on at least one processing device,
wherein said log structured file system client executes
on one or more of said compute node and said burst
buffer node in said parallel computing system;

compress, by said log-structured file system client execut-
ing on at least one processing device, said data chunk
as said data chunk is written by said log-structured file
system client to said storage node, wherein a plurality
of other log structured file system clients compress a
corresponding plurality of other data chunks of said
shared data object in parallel to generate a plurality of
compressed other data chunks; and

provide, by said log-structured file system client execut-

ing on at least one processing device, said compressed
data chunk to said storage node for storage as part of
said shared object, wherein said storage node stores
said compressed data chunk as part of said shared
object with said plurality of compressed other data
chunks, and wherein said shared object is shared by a
plurality of distributed processes in said parallel com-
puting system.

8. The compute node apparatus of claim 7, wherein said
storage node comprises a Log-Structured File server.

9. The compute node apparatus of claim 8, wherein said
Log-Structured File server stores said compressed version of
said data chunk to said shared data object on said compute
node.

10. The compute node apparatus of claim 7, wherein said
at least one hardware device is further configured to de-
compress said compressed data chunk when said data chunk
is read from said storage node.

11. The compute node apparatus of claim 10, wherein said
at least one hardware device is further configured to provide
said de-compressed data chunk to an application.

12. The compute node apparatus of claim 7, wherein said
apparatus comprises one or more of a compute node and a
burst buffer node.

13. A method performed by a storage node comprising a
Log-Structured File server in a parallel computing system
for storing a data chunk as part of a shared object, compris-
ing:

receiving, by said Log-Structured File server executing on

at least one processing device, a compressed version of
said data chunk compressed by a log-structured file
system client executing on at least one processing
device of a compute node in said parallel computing
system,

receiving, by said Log-Structured File server executing on

at least one processing device, a compressed version of
a plurality of other data chunks of said shared data
object compressed by a plurality of other log-structured
file system clients executing on at least one processing
device of a plurality of other compute nodes in said
parallel computing system; and

storing, by said Log-Structured File server executing on at

least one processing device, said compressed version of
said data chunk to said shared data object on said
storage node with said plurality of compressed versions
of said other data chunks of said shared data object
from said plurality of other log-structured file system
clients, and wherein said shared object is shared by a
plurality of distributed processes in said parallel com-
puting system.

US 9,477,682 B1

9

14. The method of claim 13, further comprising the step
of providing said compressed data chunk to a compute node
when said data chunk is read from said storage node.

15. A non-transitory machine-readable recordable storage
medium for storing a data chunk as a shared object in a
parallel computing system, wherein one or more software
programs when executed by one or more processing devices
implement the steps of the method of claim 13.

16. The method of claim 13, wherein said compressed
version is generated by a Log-Structured File System client.

17. The method of claim 13, further comprising the steps
of decompressing said compressed version and providing
the decompressed data chunk to the compute node.

18. A storage node apparatus comprising a Log-Structured
File server in a parallel computing system for storing a data
chunk as part of a shared object, said storage node apparatus
comprising:

a memory; and

at least one hardware device operatively coupled to the

memory and configured to:

receive, by said Log-Structured File server executing on

at least one processing device, a compressed version of
said data chunk compressed by a log-structured file
system client executing on at least one processing
device of a compute node in said parallel computing
system,

20

10

receive, by said Log-Structured File server executing on
at least one processing device, a compressed version of
a plurality of other data chunks of said shared data
object compressed by a plurality of other log-structured
file system clients executing on at least one processing
device of a plurality of other compute nodes in said
parallel computing systems; and

store, by said Log-Structured File server executing on at

least one processing device, said compressed version of
said data chunk to said shared data object on said
storage node with said plurality of compressed versions
of said other data chunks of said shared data object
from said plurality of other log-structured file system
clients, and wherein said shared object is shared by a
plurality of distributed processes in said parallel com-
puting system.

19. The storage node apparatus of claim 18, wherein said
at least one hardware device is further configured to provide
said compressed data chunk to a compute node when said
data chunk is read from said storage node.

20. The storage node apparatus of claim 18, wherein said
compressed version is generated by a Log-Structured File
System client.

